Administration, distribution, metabolism and elimination of polymer therapeutics

Ela Markovsky, Hemda Baabur-Cohen, Anat Eldar-Boock, Liora Omer, Galia Tiram, Shiran Ferber, Paula Ofek, Dina Polyak, Anna Scomparin, Ronit Satchi-Fainaro *

Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel

Abstract

Polymer conjugation is an efficient approach to improve the delivery of drugs and biological agents, both by protecting the body from the drug (by improving biodistribution and reducing toxicity) and by protecting the drug from the body (by preventing degradation and enhancing cellular uptake). This review discusses the journey that polymer therapeutics make through the body, following the ADME (absorption, distribution, metabolism, excretion) concept. The biological factors and delivery system parameters that influence each stage of the process will be described, with examples illustrating the different solutions to the challenges of drug delivery systems in vivo.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Many therapeutic agents are low-molecular weight compounds which are administered systemically and exhibit non-specific biodistribution profile, short plasma circulation time and rapid systemic elimination. Consequently, relatively small amounts of the drug reach the target site, and therapy is associated with side effects and low efficacy. The use of macromolecules as carriers was suggested over 50 years ago, mainly in order to avoid or improve those downsides. Jatzkewitz attached a drug to the water-soluble polymer polyvinylpyrrolidone (PVP) in the 1950s [1,2] and Ushakov and his group synthesized more water soluble conjugates during the following years [2-4]. An excellent analysis of a complete polymer-bound drug delivery system was first proposed by Helmut Ringsdorf in 1975 [5]. This proposed model consists mainly of five components: (i) macromolecular polymeric backbone, (ii) drug, (iii) spacer, (iv) targeting moiety and (v) solubilizing agent. Macromolecular carriers chosen for the preparation of polymer therapeutics should ideally be water-soluble, nontoxic, non-immunogenic, and also biodegradable and/or being able to eliminate from the organism [6,7]. Finally, the macromolecular carrier should exhibit suitable functional groups for attaching the
The choice of polymeric backbone for the conjugate has great implications on the pharmacokinetics and pharmacodynamics of the drug. The polymer characteristics, such as molecular weight, polydispersity, architecture, charge and hydrophilicity, define the drug solubility and loading, its biodistribution, body excretion and the interaction with the immune system. The polymeric backbone of the conjugate can be biodegradable, non-biodegradable, or semi-biodegradable.

For a suitable conjugation to chemical and biopharmaceutical drugs, many polymers have been proposed as carriers, including N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers, poly(ethyleneimine) (PEI), linear polyamidoamines, polyvinylpyrrolidone (PVP), polyglutamic acid (PGA), polyacrylamide (PAM), polydimethylacrylamide (PDMA), polyvinyl alcohol (PVA), chitosan and dextran. It is important to note that polyethylene glycol (PEG) has significant contribution specifically in the field of polymer–protein conjugates. PEGylation has been proven to be one of the most straightforward procedures for enhancing the therapeutic and biotechnological potential of peptides and proteins [8]. The most common types of polymeric carriers used in the field of polymer therapeutics are presented in Fig. 1 and the most common polymer backbones are presented in Fig. 2.

Many reviews had been published discussing different aspects of the growing field of polymer therapeutics. The descriptor ‘polymer therapeutics’, defined by R. Duncan, is an umbrella term used to describe polymeric drugs, polymer–drug conjugates, polymer–protein conjugates, polymeric micelles to which drug is covalently bound, the repeated layers are termed “generations” (G) and are related to the number of steps in the synthesis, i.e. the number of branching points between the core and the surface. Drugs can be encapsulated at the inner cavity of the dendrimers, of attached to the surface groups covalently or electrostatically. D: Hyperbranched polymers. Hyperbranched polymers are comprised of a randomly branched structure. Their ease of synthesis (typically using one-pot reaction) makes them relatively cheaper to produce than perfect dendrimers, though results in polydispersity.

11.1. Administration

The vast majority of polymer therapeutics that are being developed are designed to be administered by injection, usually intravenously (IV). The IV administration is the most straightforward method and its advantages are obvious, as it enters the bloodstream directly and is distributed throughout the body within seconds.

Several formulations in the market today are designed to be administered subcutaneously (SC) and intramuscularly (IM) (Peg-intron®, Pegasy®. Adagen® and more). These routes of administration allow for slow release of the drug from the injection site to the bloodstream, and therefore less frequent injections are required.

Following evaluation of the biological fate of PVA and PEG of various molecular weights injected via different routes (intraperitoneal (IP), SC, and IM), Yamaoka et al. found the elimination rate to be IP > SC > IM, with lower molecular weight polymers eliminated sooner, for both polymer types [10].

The injection administration methods hold many drawbacks for the patient and therefore lead to poor patient compliance. When designing a treatment intended for long-term therapy, a more convenient administration method should be considered.

Oral administration is the best route in terms of patient compliance. However, an orally-administered drug needs to pass several barriers on its way to systemic circulation, such as acidic environment in the stomach, proteases in the gut lumen and brush border membrane (BBM), tightly-bound intestinal epithelial cells (enterocytes) and metabolism by liver enzymes (the “first-pass effect”). All of these factors may considerably decrease the bioavailability of the drug. Nevertheless, several successful oral formulations of polymer–drug conjugates have been developed. In the field of oral drug delivery, conjugation to polymers can be used to: 1) protect sensitive drugs from degradation in stomach and gut lumen [11,12]; 2) enhance absorption in the intestine by increasing water solubility [12,13]; 3) overcome drug resistance mechanisms (MDR) by altering the absorption pathway from transcellular to paracellular or transcytosis routes [12-14] (topic of drug resistance is addressed in detail below); 4) protect the drug from first pass effect degradation by liver enzymes [11-14].

NKTR-118 is an orally-administered formulation of the anti-opiate naloxone conjugated to PEG, currently in Phase III clinical trial [15]. PEGylation of naloxone alters its pharmacokinetic properties, distribution, and metabolism. It reduces the first-pass effect, increases its bioavailability and limits its capacity to enter the CNS, while the opioid antagonist characteristics are retained [14].

Polymer–drug conjugates can cross the intestinal epithelium either between the enterocytes (paracellular route) or through the cells, by...
transcytosis mechanism. Free drugs can also enter by diffusing through the cells (transcellular route) (Fig. 4).

Chitosan is frequently used to enhance oral delivery of drugs. It is a highly mucoadhesive polymer and is capable of opening tight junctions of intestinal epithelium to facilitate paracellular transport. Low molecular weight chitosan (LMWC) form possesses even more benefits, such as improved water solubility, lower toxicity, and a narrower molecular weight distribution [11].

Lee et al. developed new oral delivery systems for paclitaxel and docetaxel by conjugation to LMWC [12,13]. Both are highly effective chemo-therapeutic drugs of the taxane family, characterized by poor water solubility. The LMWC–paclitaxel conjugate system exhibited several favorable features for oral delivery, including 1) increased water solubility of paclitaxel by conjugation to water-soluble LMWC; 2) prolonged retention of the conjugate in the GI tract due to the mucoadhesive property of LMWC; 3) conjugation to water-soluble LMWC; and 4) an ability to bypass the P-glycoprotein-mediated efflux and the cytochrome P450-mediated metabolism.

Conjugation to polymers can provide a means to facilitate serosal transfer and to overcome the obstacles associated with oral delivery of problematic compounds. For example, the bioavailability of peptides, such as insulin, is very poor due to formidable barriers in the gastrointestinal (GI) tract such as acid hydrolysis in the stomach, enzymatic degradation by proteases in the lumen and BBM, and absorption through the intestinal wall.

Conjugation to LMWC also allowed for effective oral delivery of insulin [11]. LMWC–insulin conjugates reduced blood glucose levels in diabetic rats as opposed to native insulin and LMWC alone. The therapeutic effect was in proportion to the molecular weight of the conjugated LMWC. This molecular weight dependency may be attributed to the discrepancy in the ability to open tight junctions of intestinal epithelial cells and to the mucoadhesiveness of each LMWC molecule. It is anticipated that LMWC–insulin conjugate may also be able to escape hepatic enzymatic degradation once absorbed in blood, as demonstrated for oral delivery of taxanes in the form of LMWC conjugates.

Oral delivery using PAMAM dendrimers was evaluated using the everted rat intestinal sac model [16]. Anionic PAMAM dendrimer generations 2.5 and 3.5 showed rapid serosal transfer rates and had low tissue deposition, likely indicating a very efficient transcytotic transport pathway. These dendrimers provide, therefore, a platform for future development of oral polymeric drug delivery systems.

The adhesive properties of chitosan were also exploited for enhancement of delivery to other mucosal surfaces. For example, Slutter et al. developed N-trimethyl chitosan (TMC)–antigen conjugate for nasal vaccination. TMC serves both as an immunostimulatory adjuvant, to enhance immune response in the nasal mucosa and as mucoadhesive to prolong nasal residence time [17]. Conjugates also produced stronger immune response than previously used TMC nanoparticles, due to their smaller size and better penetration through the nasal epithelium.
Once the conjugate is absorbed through the intestinal wall, it enters the hepatic portal system and is carried via the portal vein into the liver, where many drugs undergo metabolism by liver enzymes (the first pass effect). After passing through the liver, the orally-administered conjugate enters the systemic circulation and is carried with the blood flow throughout the body, now sharing paths with its IV-administered counterpart. It is noteworthy that many non-covalent polymeric oral delivery systems are also being developed, such as self-assembled micelles, nanoparticles etc. [18-22]. However, covering this broad topic is beyond the scope of this review.

1.2. Distribution

1.2.1. Travelling to the site of action

1.2.1.1. Properties of the carrier. Once in the bloodstream, the size, shape, surface charge and decorations, and mechanical properties of the conjugate play key roles in its biodistribution, vascular dynamics, targeting, clearance, uptake, drug release kinetics and degradation. Naturally, interactions with the immune system and with serum proteins, if occur, have also great influence on these processes. The impact of size on biodistribution has largely been elucidated using spherically shaped particles. However, particle shape was indicated just as important, showing that shape has a significant impact on biodistribution [27,28]. Circulation time of polymer-drug conjugates is significantly longer than that of low molecular weight drugs, since the endothelium of normal blood vessels is typically impermeable to macromolecules. The disorganized vasculature that characterizes angiogenic tumors and other pathologies, with its discontinuous endothelium, leads to hyperpermeability to circulating macromolecules, in addition to the ineffective lymphatic drainage. The subsequent macromolecular retention is defined as the enhanced permeability and retention (EPR) effect [29,30]. This selective distribution pattern of the drug carriers is referred to as “passive targeting”.

HPMA copolymer conjugated to the chemotherapeutic drug doxorubicin (i.e. PK1) is the first example of passive targeting to the tumor site using the EPR effect and the first synthetic polymer-based anticancer conjugate to enter clinical trial in 1994 [31]. It presented a breakthrough that led to the exponential growth of interest in the field of polymer therapeutics.

While most examples of conjugates targeted by the EPR effect are related to treatment of solid tumors, angiogenesis is a crucial process not only in tumor growth and progression. Excessive angiogenesis also characterizes diseases such as diabetes, age-related macular degeneration, inflammation, rheumatoid arthritis (RA), psoriasis and more [32]. Although the lymphatic drainage in these tissues is usually
normal, neovascularization permeability is similar to that found in solid tumors [30], allowing the design of polymer therapeutics for passive targeting by an EPR-like effect [33,34].

The actual size of the gaps in tumor vasculature is dynamic and varies greatly between different tumor types and between vessels in the same tumor. Usually the molecular weight range of 20–200 kDa is used to take advantage of the EPR effect and to avoid rapid renal excretion. Particle size range of 20–100 nm was found as an optimum for prolonged circulation, accumulation in tumor tissue and enhanced diffusion within tissue [35–37].

The shape of the drug carrier also has significant influence on its distribution and performance. The study of Geng et al. [27] on filomicelles (long filamentous stable diblock copolymeric micelles of PEG-polylethylenylene or PEG-polycaprolactone) showed that filament structures persist in the circulation after intravenous injection considerably longer than rigid rods and flexible spheres (‘stealth’ polymersomes). Filomicelles of varied length loaded with paclitaxel shrank A549 tumors in nude mice, with greater efficacy for longer filomicelles (up to 8 μm). They attributed this phenomenon to the nanoparticles’ behavior under flow; spherical and short filaments have shorter circulation time, because of better cellular uptake and blood vessel penetration. In contrast, flexible long filaments are extended by the blood flow and drift past the cells, exhibiting longer circulation time. Under static conditions, long filaments are relaxed and internalized by cells. Thus, the elongated filament shape, as well as filament flexibility, makes it a better delivery system. These in vitro experiments were conducted under flow velocity similar to that in the spleen. It should be interesting to conduct similar experiments under conditions resembling the sluggish flow of tumor vasculature. Since filomicelles are self-assembled polymer therapeutics and the conclusions in this study relied on the variations of shape of the filomicelles, we may extrapolate from this study to the whole field of polymer therapeutics, and examine it particularly for polymer–drug conjugates as well.

Saad et al. [38] conducted a comparative efficacy study of various drug nanocarriers. 30 nm linear PEG polymer, 5 nm PAMAM dendrimer and 100 nm liposome were used to deliver paclitaxel to H69 and A549 lung cancer cells and tumors in nude mice. All nanocarriers were fluorescently-labeled with Cy5.5 and a synthetic analog of LHRH (Luteinizing hormone-releasing hormone) peptide was attached for targeting. All treatments were given in suitable nanocarriers’ concentrations to give an equivalent dose of paclitaxel of 2.5 mg/kg. It was found that all nanocarriers showed enhanced efficacy compared to the free drug. Without the targeting moiety of LHRH peptide, dendrimeric nanocarrier was the least effective, while PEG polymer nanocarrier was the most effective in suppressing tumor growth. This result correlates well with the theorem of Geng et al. [27] regarding better efficacy for long flexible filaments as nanocarriers. The most surprising result of Saad et al. [38] was received when targeting moieties were added to these nanocarriers. Targeting with LHRH peptide significantly enhanced antitumor activity of all nanocarriers, and leveled down the differences between them. This suggests that when using effective targeting, nanocarriers can be selected based on parameters such as type of therapeutic, solubility, electric charge, ease of preparation etc. rather than architectural parameters such as size and shape. This conclusion, derived from a first comprehensive comparative study, if verified in future analogous comparative studies of various delivery systems, holds great implications for rational design of drug delivery nanocarriers.

An important advantage of linear polymeric carriers over spherical particles is their flexible random coil structure, which allows them to “snake” into gaps smaller than their hydrodynamic diameter and penetrate into tissues better than the more structured spherical carriers. This, perhaps, makes them more effective in the conditions of angiogenic vasculature characterized by gaps of variable size and of dense tumor tissue, as illustrated by the studies mentioned above.

1.2.1.2. Active targeting

As mentioned above, passive targeting of polymeric nanocarriers is achieved by exploiting the EPR effect. However, there are several limitations to this approach, including variable vascular hyperpermeability among different tumor types and different areas of the heterogenic tumor tissue. Low cellular uptake of nanocarriers after extravasation can be another limitation, reducing the actual drug concentration within the tumor cells due to the stagnation around the tumor tissue. The passive localization associated with the EPR effect can be significantly improved by an active mechanism involving receptor–ligand interactions. Thus, a targeting moiety can be used in order to direct the molecule of interest to the target in a more specific way and thus overcome those limitations.

Active targeting combined with passive targeting became dominant in the design of drug delivery systems, especially in the field of cancer. Active targeting is expected to lead to higher and faster intra-tumor accumulation and, in the case of targeting with internalizing ligands, to increase intracellular concentrations of the drug. However, when designing a polymer therapeutic with a targeting moiety, the chemical properties of this additional molecule have to be carefully evaluated, because it may have an effect on the entire conjugate. For example, the attachment of folate to HPMA homopolymers led to aggregate formation [39].

A wide variety of targeting moieties is currently being examined. Practically any molecule overexpressed in the disease being targeted, either extra- or intracellularly, can be exploited. Examples include targeting to various markers expressed exclusively or overexpressed on tumor vasculature; such as VEGF receptor, αvβ3 integrin, E-selectin [26,40–42] and on tumor cells; such as folate receptor, neural cell adhesion molecule, transferrin receptor [43–45]. Examples of targeting moieties include: peptides or other substrates which selectively bind cell surface receptors [46–48]; antibodies directed to antigens on cell surface [49]; materials with high affinity to compounds found at the extracellular matrix of the target site [50,51].

When discussing active targeting to tumor cells, it should be kept in mind that tumors contain genetically unstable cell populations with different cell-surface receptors, marker enzymes and drug sensitivity. This heterogeneity within a tumor can be a major obstacle to the success of a treatment, and can facilitate development of drug resistance. This is particularly relevant for polymer–drug conjugates designed for active targeting of tumor cells or intracellular bioreponsive drug release. Overcoming this obstacle is possible if the targeted treatment will lead to toxicity also in the non-targeted neighboring cells, in a phenomenon known as the “bystander effect”. The bystander effect is usually achieved locally, by diffusion or via gap junction transfer of the active drug, after its dissociation from the carrier, to surrounding tumor cells. Other mechanisms include: (1) endothelial cell bystander effect derived from anti-angiogenic potential of chemotherapeutic agents; (2) systemic bystander effect due to cell-mediated immune response towards drug-treated tumor cells, which can lead to an extended therapeutic effect on metastatic tumor cells.

1.2.1.3. Immune response

An additional factor exerting a critical effect on the biodistribution of polymer therapeutics is their recognition and uptake by the immune system. The uptake of the macromolecules by the mononuclear phagocyte system (MPS), also known as reticuloendothelial system (RES), is a multi-step process, and it usually starts in the bloodstream, with the opsonization, i.e. the recognition and binding of foreign material by opsonins. The opsonins can be blood serum proteins (mainly albumin and fibrinogen) but the most common are specific proteins of the immune system, such as immunoglobulins and complement proteins [52]. Many drug delivery systems and their components are immunogenic and elicit the formation of antibodies, responsible of the immunological adverse reactions and of the rapid clearance of the drug delivery systems from the bloodstream [53].
PEG, which is one the most commonly used polymers in the field of polymer therapeutics, is known to induce the formation of anti-PEG IgM antibodies. Although the IgM response is not considered clinically relevant [54], several studies recently reported a rapid clearance of PEGylated proteins in the presence of antibodies against PEG or against the PEG–protein conjugate [55–57]. In some cases, allergic reactions after treatment with PEGylated asparaginase have been reported [58]. Negligible antibody formation was observed against the homopolymer poly(HPMA) or its copolymers [59], although hyper-sensitivities reactions induced by (meth)acrylates might occur [60].

Following opsonization, the macromolecules undergo phagocytosis by macrophages and Kupffer cells. The uptake by reticuloendothelial cells takes place within seconds after opsonization [61], and it is responsible for the fast clearance of the drug delivery systems from the blood and their accumulation in the liver and spleen, and to a lesser degree in the lung, kidney and lymph nodes. After phagocytosis, the nanomaterials have different metabolism and excretion pathways according to their specific characteristics, such as biodegradability, size and other properties, as described below.

Among the drug delivery systems, conjugation to polymers is one of the main approaches to prolong the circulation time of therapeutic agents, in particular due to the steric hindrance of the polymer that reduces aggregation and to the hydrophobic interactions responsible for the uptake by the MPS [62]. Bioconjugates appear to be more effective than other drug delivery systems (e.g. liposomes) in reducing uptake by the liver and spleen. As highlighted by Duncan and Vicent [63], HPMA–drug conjugates usually have a hydrodynamic diameter lower than 20 nm, which allows the escape from the MPS clearance.

It has often been reported that the physicochemical characteristics of the polymers, such as molecular weight and charge, are the main determinants of the biodistribution of the conjugate. Cationic polymers are preferentially accumulated in the liver [64]. In general, the higher is the size of the drug delivery system, the faster is the uptake by macrophages. Nevertheless, PEGylation, which increases the size of the system, is the main technique to avoid opsonization of the drug carriers, especially in the case of PEG–protein conjugates [62] or in the case of PEGylation of liposomes, making them “stealth liposomes” [65].

In order to evaluate the different behavior according to the composition and structure of the macromolecules, Caliceti et al. conjugated four neutral polymers (PVP, poly(N-acryloylmonopholine) (PACM), linear and branched PEG) to uricase, and followed the biodistribution profile in healthy mice. Despite the similar physicochemical characteristics (neutrality, relatively low molecular weight and amphiphilicity), the four polymers confer different behavior to the conjugates. In particular, PACM conjugate easily distributes in all the organs rich in reticuloendothelial cells, while PVP–uricase conjugate shows low tissue distribution, and only partially accumulates in the liver. Remarkably, the linear and branched PEG conjugates showed significant differences in the biodistribution profile, as the branched PEG accumulated in the liver and spleen, while the linear one did not. The study suggests that not only charge and molecular weight, but also chemical composition and structure have to be considered in the choice of the polymer for the protein conjugation [66].

Lammers et al. [67] reported the biodistribution profiles after IV injection of thirteen HPMA copolymers, with different MW, functional groups and drug loading, showing that spleen is the principal accumulation site and spleen macrophages are the main cells responsible for the clearance from the bloodstream of all the conjugates. The uptake by the liver and the other organs of the MPS varies according to the physicochemical characteristics of the polymers. In general, increase in MW (from 23 to 65 kDa) improved the biodistribution of the conjugate in tumor-bearing animals, decreasing the uptake by the MPS organs and increasing accumulation in the tumor tissue. Chemical modifications, such as the introduction of functional reactive groups, peptidic spacers and active drugs, increased the uptake of the conjugate in the liver and the lung.

PEG–Doxorubicin conjugates also show accumulation in the immune system organs according to their MW and structure (linear or branched). Veronese and colleagues reported that the PEG conjugates have a favorable biodistribution, with preferred accumulation in the tumor tissue, and liver uptake values similar to other polymer–drug conjugates, such as HPMA [68]. Other polymers, such as dextran, appear not adequate for the delivery of doxorubicin to tumors. Doxorubicin–dextran conjugate (DOX–OXD, AD–70) in Phase I clinical trial displayed very high toxicity, in particular hepatotoxicity, ascribed to uptake by the MPS [69]. Nevertheless, other conjugates that showed high accumulation in all the MPS organs, had better results in clinical trials. The PGA–Paclitaxel conjugate (Paclitaxel poliglumex, CT–2103), is already in phase III clinical trials despite its high accumulation rate in the liver and in other immune system organs [70].

Bioconjugation to polymers significantly decreased the uptake of camptothecin by the immune system organs. Following IV injection in tumor-bearing animals, camptothecin accumulated in the liver and spleen, but after conjugation with relatively high MW PEG (40 kDa) [71] or with polyacetal poly(1-hydroxyethyl LA) hydroxyethylformal) 60 kDa (XMT-1001, phase I in clinical trial), the conjugates mainly accumulated in the tumor site, with reduced uptake by the MPS organs [72].

For most studies it was concluded that polymers were taken up by the liver, spleen and lung as organs related to the MPS. However, there is a lack of research on the accumulation of polymer therapeutics on the phagocytic level.

We realize that interaction of polymer–drug conjugates with the immune system is an immensely broad topic, and properly addressing it is beyond the scope of this review. The reader is referred to other excellent reviews that cover this field [53,73].

1.2.1.4. Distribution of low MW drugs. As opposed to macromolecules, which gain entry into tissues only through gaps in angiogenic vessels, low molecular-weight drugs are able to diffuse through normal vasculature to any tissue and internalize into cells, therefore causing undesirable systemic side effects. The main benefit of polymer–drug conjugates is the reduction in toxicity, mainly due to improved selectivity for target tissues. Coupling a low molecular-weight drug to a polymer results in altered biodistribution compared with the free drug. Not surprisingly, the first conjugates synthesized were coupled with orthodox anticancer drugs (i.e. doxorubicin, cyclophosphamide, methotrexate, etc.).

Angiogenesis inhibitors are relatively less toxic than conventional chemotherapy and have a lower risk of drug resistance. Nevertheless, most angiogenesis inhibitors are low molecular-weight-compounds that are delivered systemically and consequently exhibit a non-specific biodistribution, short plasma circulation times and rapid systemic elimination [74]. Consequently, relatively small amounts of the drug reach the target site, and therapy is associated with side effects and low efficacy [75]. The poor pharmacokinetics and limited therapeutic effect of anti-angiogenic compounds can be improved by conjugation of these agents with polymeric delivery systems. HPMA copolymer conjugated to the potent anti-angiogenic drug TNP-470 (Caplostatin), synthesized by Satchi-Fainaro et al., is the first example of anti-angiogenic polymer–drug conjugate [76]. In addition to the conjugate's selective tumor accumulation, it does not cross the blood–brain barrier and does not induce the neurotoxicity associated with the treatment with unconjugated TNP-470. Caplostatin is highly effective on a large variety of cancer types and can be administered over a dose range more than ten-fold that of the original TNP-470 without any toxicity [76–78].

1.2.1.5. Distribution of biological drugs. Despite their high therapeutic potential, the use of biomolecules (e.g. RNAi, proteins and peptides) as therapeutic agents is hindered by their low bioavailability. Crossing biological barriers, such as cell membranes and blood vessel walls, is a
major obstacle in the clinical application of biomolecules. When administered into the circulation, biomolecules are subject to degradation by proteolytic enzymes in the blood and to rapid renal clearance. The delivery of proteins is limited to cell surface and extracellular targets due to the problematic internalization of proteins to the cell, because of their large size and negative charge [79]. A large variety of carriers have been developed for delivery of biomolecules, including viruses, liposomes, nanoparticles and polymeric conjugates. Conjugation of the polymeric carrier to a biomolecule holds several benefits. Conjugation protects the biomolecule from degradation by masking it from nuclease and peptides [80–83]. Moreover, multivalent polymers can concurrently attach both a targeting moiety and the biomolecule, allowing its internalization by receptor-mediated endocytosis, a fast and efficient mechanism (discussed below).

Enhanced efficacy, increased safety, reduced immunogenicity and improved delivery can be achieved by conjugation of biomolecules, such as proteins, to polymeric carriers [9,84–87]. As mentioned above, the most common polymer for protein conjugation is PEG, with 8 PEGylated proteins approved for clinical use since the first PEGylated adenosine deaminase (Adagen®, Enzon Pharmaceutical, USA) in 1990 and one PEGylated anti-vascular endothelial growth factor (VEGF) aptamer [88,89]. Certolizumab pegol, marketed as Cimzia® by UCB, is a novel PEGylated anti-TNFα monoclonal antibody for the treatment of RA [90]. It has demonstrated a fast and lasting effect on the signs and symptoms, inhibition of joint damage and improvement in physical function [91,92].

1.2.2. Disease site microenvironment
Following extravasation through the blood vessel walls, polymer–drug conjugates meet with the extracellular milieu of the disease site. The microenvironment in cancer and in various inflammatory diseases, such as RA, has been studied extensively. The major common characteristics are low pH, overexpression of various enzymes and oxidative stress.

The conjugated drug needs to be released at the target site, whether extra- or intracellularly, in order to exert its therapeutic action. Pathophysiological conditions in the extracellular environment of the disease site offer excellent targets that can be exploited for designing drug delivery systems [93,94]. Targeting can be achieved by conjugating the drug to a polymeric backbone through a linker, susceptible to a chemical shift or biological element overexpressed at the pathological site. Thus, the majority of linkers in the polymer therapeutics field are either enzymatically cleavable [95,96] (Tables 1 and 2) or pH-sensitive [97–99]. The choice of linker between the active agent and the polymer backbone has a significant role in achieving a selective release of the drug in the target site. The drug is essentially biologically inert when attached by a linker to the polymer. Only when the drug is released from the polymer backbone, it gains its activity. The linker should be selected based on unique characteristics of the microenvironment, and on the final target of the drug, i.e. where the drug should be released: inside or outside the cell, or in a specific organelle. Naturally, the linker should be stable in the bloodstream until the polymer conjugate reaches its destination [5,100,101]. Careful attention should be given to the choice of suitable linkers. The chosen chemical bond will affect the pH-dependent stability of the pro-drug, as well as the molecular weight of the carrier and the site attachment on the carrier.

A key factor in the microenvironment of cancer and inflammatory diseases is the acidic pH. Numerous studies have shown that the extracellular pH in tumors is consistently acidic and can reach pH values approaching 6.0. As solid tumors develop faster than their blood supply, a hypoxic microenvironment typically forms within the tumor mass, resulting in high glycolysis, the end product of which are metabolic acids [102,103]. In terms of molecular events and cellular behavior, many similarities exist between cancer and inflammation. For instance, leukocytes on their way to a site of inflammation and metastasizing cancer cells use similar proteases, such as matrix metallo-proteases (MMP), to degrate the extracellular matrix in order to be able cross endothelial basement membranes from or into the blood or lymph circulation. At another level, signaling molecules, such as cytokines and chemokines, regulate not only cell proliferation but also the balance between proteases and natural inhibitors in both inflammation and cancer [104]. Poor perfusion in tumors and inflammation sites not only reduces the ability to remove tumor-derived acids, but also leads to regional hypoxia, which can exacerbate fermentative metabolism. We can design our linker as an acid-labile trigger, thus releasing the drug in an environment with a lower pH than the plasma pH, such as the acidic surroundings of a tumor or the even more acidic environment in the endosome and lysosome. Linkers that can be used for pH-triggered release of the drug are N-cis-aconityl, hydrazide and carboxylic–hydrazide bonds, acetal, imine and trityl bonds.

Dexamethasone (Dex), a powerful anti-inflammatory glucocorticoid, was conjugated with an HPMA polymer to form HPMA copolymer–Dex conjugate for the treatment of RA [105]. Besides taking advantage of the EPR effect for accumulation in the inflamed joints, the conjugate was designed using a pH-sensitive hydrazone linker, allowing the release of the drug only at the acidic environment of the inflammation site. The therapeutic effect of HPMA copolymer–Dex conjugate in adjuvant-induced arthritis rat models was highly remarkable and systemic administration of the conjugate clearly showed a superior and long lasting anti-inflammatory effect, together with a profound bone and cartilage protection when compared with free Dex [33,34,105].

The extracellular microenvironment of many disease sites, including cancer, cardiovascular diseases and arthritis, is further characterized by increased expression and activity of various enzymes, the

Table 1
Extracellularly cleaved linkers.

<table>
<thead>
<tr>
<th>Overexpressed enzyme</th>
<th>Substrate (linker)</th>
<th>Disease</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cathepsin K</td>
<td>GGPNNle</td>
<td>Breast cancer; metastatic bone disease; osteoporosis, Psoriasis, multiple sclerosis, rheumatoid/osteoarthritis, inflammation, lung cancer, heart failure after myocardial infarction, chronic obstructive pulmonary diseases, Ocular diseases, diseases of the gut characterized by ulceration (MMP-1, -2, -3, -7, -9, -13 and -14 are overexpressed in colorectal cancer)</td>
<td>[51]</td>
</tr>
<tr>
<td>MMP (matrix metalloproteases):</td>
<td>CG, LID/GPLGV/PLGMS/GPLGAC/CDGR/GPLGVRGC</td>
<td>Arthritis, tumor invasion and metastasis, angiogenesis, cerebral ischemia</td>
<td>[174,175]</td>
</tr>
<tr>
<td>MMP-2</td>
<td>PLGVR/PLCLYL/PLGLYAL/GPLGIAAG/PVLG/GPLGMLSQ/GPLGWAQ/GPLGVRGC</td>
<td></td>
<td>[174,175]</td>
</tr>
<tr>
<td>MMP-9</td>
<td>PLG5LYL/PLGLYAL/AALCVA/PVLG/GPLGMLSQ/GPLGWAQ/GGPLGWAQ</td>
<td></td>
<td>[174]</td>
</tr>
<tr>
<td>MMP-7</td>
<td>GVLPSLTMGC/RPLALWRS</td>
<td></td>
<td>[175]</td>
</tr>
<tr>
<td>MMP-13</td>
<td>GPLGMRGLGK</td>
<td></td>
<td>[175]</td>
</tr>
</tbody>
</table>
most prominent types being matrix metallo-proteases (MMP) and cathepsins [106]. MMP, also referred to as matrixins, are a family of approximately 24 human zinc-containing endopeptidases that are together capable of degrading all components of the extracellular matrix (ECM) and many other proteins. Though MMP were discovered as ECM degrading enzymes, an emerging view is that matrix degradation is not the only (or even primary) function of these enzymes, and their activity has been extended to cell growth, signaling, migration, differentiation, and apoptosis [107-109]. Overactivity of MMP-1, -3, -7, -9, and -13 has been implicated in arthritis and represents a potential therapeutic target in this disease [110,111]. Increased or misregulated levels of many MMP are observed in many pathologies associated with inflammation [112,113].

Enzymatically-cleavable linkers are commonly used for selective targeting of polymer–drug conjugates. For example, for extra-cellular release linkers degradable by an extra-cellular enzyme, such as cathepsin K (described below), are often used. Many other examples of such linkers are summarized in Table 1.

Another important element of the tumor and inflammation microenvironment is the increased oxidative stress, namely over-production of reactive oxygen species (ROS). During oxidative phosphorylation ROS including superoxide anion (O$_2^-$) and hydrogen peroxide (H$_2$O$_2$) are produced as by-products [114]. Hydrogen peroxide, that is abundant in the environment of inflammation and cancer [115], can cleave boronic acid or ester linkers, or even the ion Fe(II) used with the substrate trioxolane ring to target malaria [116].

1.2.3. Cell internalization

The usual uptake route of untargeted polymer-bound drugs to most cells is through fluid phase pinocytosis [117]. Internalization kinetics and efficacy are dependent on several factors, such as particle size, shape and surface charge. In a study done on HPMA copolymer, it was found that internalization was more efficient for smaller MW polymers, and there was virtually no internalization of polymer molecules above 400 kDa [118]. A recent study on PEG-based particles showed that rod-shaped nanoparticles are internalized faster than spherical particles [119], suggesting that linear or hyperbranched polymers might internalize faster than other spherical carriers. Actively-targeted drugs mostly undergo internalization through receptor-mediated endocytosis, in which macromolecules bind to complementary receptors on the cell surface and enter the cell as receptor-macromolecule complex in clathrin-coated vesicles. This process increases the efficiency of internalization of particular macromolecules more than 1000-fold compared with ordinary pinocytosis [120,121]. The size of clathrin-coated vesicles depends on the size of its cargo, with an observed upper limit of about 200 nm external diameter, which should be taken into account when designing any polymer therapeutic [122,123].

Following internalization by pinocytosis or by receptor-mediated endocytosis the conjugates are carried to the early endosome (EE). In the early endosome a slightly acidic pH (6.0-6.8) is maintained. The endosome serves as a sorting compartment, from which the molecules can be recycled back to the plasma membrane or routed to the late endosome (LE) and lysosome for degradation [124]. Here, ligands are degraded by the even lower pH (about 5.0) and the highly concentrated lysosomal enzymes. Recycling from lysosomes occurs relatively slowly, which explains why cells are capable of accumulating large amounts of internalized material.

Unconjugated small molecule drugs usually enter cells by passive diffusion through the cell membrane, a rapid process that takes minutes, as opposed to the slow processes of endocytosis and linker cleavage of the conjugates [117,125]. This should be kept in mind when comparing the efficacy of the conjugated drug against the free drug. This is especially true for in vitro experiments, where the lack of selective distribution leaves little advantage for the conjugated drug.

One of the major obstacles in cancer chemotherapeutics is the acquisition of multidrug resistance (MDR) by cancer cells. In this phenomenon, resistance to chemically-unrelated drugs occurs due to active transport of these drugs out of the cell. Overexpression of the ATP-binding cassette (ABC) transporters, mainly P-glycoprotein (Pgp) [126], multidrug resistance-associated proteins (MRP) [127] and breast cancer resistance proteins (BCRP) [128], is one of the primary mechanisms of MDR. Once these transporters bind a substrate in the inner membrane, the substrate is subsequently expelled into the extracellular space. This reduces the intracellular levels of cytotoxic drugs below lethal thresholds, making the drug ineffective. Conjugation of cytotoxic agents with polymers changes the path of drug internalization from diffusion to endocytosis [Fig. 4], thus minimizing drug interaction with MDR transporters, leading to increased intracellular accumulation and enhanced efficacy of the drug in resistant cells [129-132].

Table 2

<table>
<thead>
<tr>
<th>Overexpressed enzyme</th>
<th>Substrate (linker)</th>
<th>Disease</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cathepsins (cysteine proteases)</td>
<td>NEVA/KK</td>
<td>Cancer</td>
<td>[176]</td>
</tr>
<tr>
<td>Cathepsin B</td>
<td>FK/VR/GFLG/FR6-E-8-D</td>
<td>Cancer metastasis</td>
<td>[106,176]</td>
</tr>
<tr>
<td>Cathepsin D</td>
<td>GPC/FR/FR/LSIC/GFLG</td>
<td>Cancer</td>
<td>[175,177,178]</td>
</tr>
<tr>
<td>Cathepsin L</td>
<td>FR (cross-activation with cat. B)</td>
<td>Hepatoma metastasis</td>
<td>[179]</td>
</tr>
<tr>
<td>Cathepsin H</td>
<td>LR</td>
<td>Rheumatoid arthritis, Psoriasis, Autoimmune diseases, multiple sclerosis, rheumatoid/Joestitis arthritico, osteoporosis</td>
<td>[175]</td>
</tr>
<tr>
<td>Cathepsin 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legumain</td>
<td>CBAAA/NEVA/6-E-8-D</td>
<td>Cancer</td>
<td>[151,176,180]</td>
</tr>
<tr>
<td>HDAC: Histone deacetylases</td>
<td>K(4c)</td>
<td>Cancer</td>
<td>[149,151]</td>
</tr>
<tr>
<td>HDAC1, 2, 3, 6</td>
<td>K(4c)/K(4c)-K(4c)-K(4c)/K(4c)-K(4c)-K(4c)</td>
<td>Prostate, gastric, colon, breast and cervical tumors</td>
<td>[10,11]</td>
</tr>
<tr>
<td>Caspases (proteases): NEVA</td>
<td></td>
<td>Apoptosis imaging</td>
<td>[176]</td>
</tr>
<tr>
<td>Caspase 3</td>
<td>NEVA/6-E-8-D/DEVD</td>
<td>Hypoxia</td>
<td>[176,182]</td>
</tr>
<tr>
<td>Caspase 7</td>
<td>DEVD/APE/DEVD/GSGC/DEVDC/SGDEVDSG</td>
<td>Traumatic brain injury</td>
<td>[175,183]</td>
</tr>
<tr>
<td>Caspase 9</td>
<td>NEVA</td>
<td>Hypoxia</td>
<td>[182]</td>
</tr>
<tr>
<td>KLK6</td>
<td>GARRG/WARRS/WARRR/KRRKRW/AKRGG/WRRKR</td>
<td>Colon and gastric cancer</td>
<td>[185-187]</td>
</tr>
<tr>
<td>Kallikrein-related peptidase 6—encodes a trypsin-like serine protease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIM (PIM1, PIM2, PIM3)</td>
<td>X-not basic or large hydrophobic residue</td>
<td>Hematologic malignancies and solid cancers</td>
<td>[188]</td>
</tr>
<tr>
<td>serine/threonine kinases</td>
<td>Consensuses sequence: ARKRRRHP5-GPPTA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A series of studies on HPMA–copolymer doxorubicin (Adriamycin, ADR) conjugate addresses the issue of multi-drug resistance in sensitive and resistant ovarian carcinoma cells (A2780). These studies have shown increased uptake of the conjugated adriamycin into ADR-resistant ovarian carcinoma cells (A2780/AD) compared with the free drug. Furthermore, HPMA copolymer–adriamycin did not induce multidrug resistance in A2780 cells after repeated exposure, as demonstrated by low expression levels of the MDR1 gene. This data indicates that the conjugate is able to overcome the ATP-driven Pgp efflux pump [129-132].

Nucleic acids are not readily taken-up by cells due to their strong negative charge. Conjugation of a biomolecule with a polymeric carrier shields or neutralizes the negative charge and promotes internalization in the target cell either by pinocytosis or by receptor-mediated endocytosis, depending on the carrier. The end results of the use of such carriers, i.e. successful transfections by pDNA and RNAi, suggest that an endosomal escape event from the early endosome takes place, avoiding fusion with the lysosome and ultimately elimination via the Golgi system [80-83,133]. However, comprehensive monitoring of the endosomal escape has not been done. The leading hypothesis today, suggested by J.P. Behr in 1995 [134], is that endosomal escape occurs by the “proton sponge” effect [133-136]. The transition from the early endosome to the late endosome and finally fusion with the lysosome for degradation are accompanied with rapid drop in pH from neutral to approximately pH 6 in the early endosome and pH 5 in the lysosome. According to the “proton sponge” effect theory, different groups at the polymer backbone, such as amine groups, have the ability to protonate under acidic pH, reducing the free proton concentration, which disrupts the drop in pH. Reduction in the free proton concentration leads to proton and chloride influx, osmotic swelling and eventually rupturing of the endosome and release of polymer and nucleic acids to the cytoplasm [135,137] (Fig. 5).

When administering synthetic small interfering RNA (siRNA) to the cell, in addition to the therapeutic effect, silencing of unwanted genes can also occur [138]. This off-target effect might be caused by hybridization of the siRNA with non-specific mRNA strands. siRNA is further recognized by several immune-related cytoplasmic proteins, such as transmembrane toll-like receptors (TLRs), that ultimately stimulate the inflammatory response [139-141]. However, off-target effects can be restrained by different modifications of the siRNA and the conjugate [139,142-144].

The specific characteristics of both intracellular and extracellular environments can be used for targeting of drug delivery systems. Acid-labile linkers described above are usually intended for release of the conjugated drug in the lysosome. It should be kept in mind though, that pH-cleavable linkers can also be degraded, at least partially, in the low pH of the disease site microenvironment.

The intracellular environment of cancer cells is characterized by overexpression of various enzymes, such as cathepsins, histone deacetylases and legumain.

Cathepsins are classified based on their structure and catalytic type into serine (cathepsins A and G), aspartic (cathepsins D and E), and cysteine cathepsins. Cysteine cathepsins constitute the largest cathepsin family, with 11 proteases in humans referred to as cathepsins B, C (also known as cathepsin J and dipeptidyl-peptidase 1), F, H, K (also known as cathepsin O2), L, O, S, W, V (also known as cathepsin...
Most cathepsins become activated at the low pH found in lysosomes. Thus, the activity of this family lies almost entirely within those organelles, although there are exceptions. For example, cathepsin K works extracellularly after secretion by osteoclasts in bone resorption. In general, the cysteine cathepsins are stable in acidic cellular compartments, i.e., in lysosomes and endosomes, and capable of efficiently cleaving a wide variety of substrates. The roles of cathepsins in many physiologic and disease processes have been covered by recent comprehensive reviews [146-148]. Histone deacetylases (HDACs) and histone acetyltransferases (HATs), located in the nucleus, are two kinds of enzymes, which can, by reversible deacetylation and acetylation, modify the structure and function of chromatin histones that are involved in the regulation of gene expression, as well as many non-histone proteins that regulate cell function in eukaryotes. HDACs have attracted more and more attention over the past few years due to their relationship to cancer and several other diseases. Many HDAC inhibitors (HDACi) have even entered preclinical or clinical research as anti-cancer agents and have shown satisfying effects. HDACs, including 18 members at least, are subdivided into 4 groups. A new emerging approach binds non-degradable polymer blocks with degradable linkers. Thus, high molecular weight copolymers, with prolonged circulation and increased tumor-to-organ accumulation ratios due to the EPR effect, are obtained. At the target site, the linkers are cleaved, releasing the active agent and at the same time causing the degradation of the backbone into small blocks which are excreted by the kidney. Recently, several reports on linear polymers were published, in which the monomer units were linked by acid-labile linkers, such as ketal, acetal, and cis-aconitoyl bonds. By incorporating pH-sensitive bonds into the backbone of the polymeric carrier, degradation of the polymer under the acidic conditions in the intracellular environment is achieved. Jeffernan et al. synthesized a novel acid-labile poly-(1,4-phenyleneacetamide dimethylene ketal) (PPADK), through acetal exchange reaction. Those polyketaly nanoparticles bear ketal linkages in their backbone and degrade via acid-catalyzed hydrolysis into low Mw compounds that can be easily excreted [158]. This strategy still suffers from several disadvantages, such as low MW and absence of functional groups for attaching drugs, and thus requires further optimization [101].

1.3.1. Biodegradable polymers

Biodegradable polymers are polymers that can undergo cleavage of bonds in the polymeric backbone, either hydrolytically or enzymatically. Natural polymers such as collagen and hyaluronic acid undergo biodegradation with the degradation products, such as amino acids and saccharides, absorbed in the biochemical pathways of the body. Some synthetic polymers can undergo similar degradation. For example, Poly(L-glutamic acid) and poly(aspartic acid) are highly susceptible to degradation by lysosomal enzymes, producing monomeric amino acids as degradation products. The polysaccharide chitosan is mainly degraded by lysozyme through the hydrolysis of the acetylated residues [156]. Dextran is degraded by different dextranases, α-1-glucosidases, present in various organs, including liver, spleen, kidney, and the lower part of the GI tract [157].

1.3.2. Semi-degradable polymer backbones

A new emerging approach binds non-degradable polymer blocks with degradable linkers. Thus, high molecular weight copolymers, with prolonged circulation and increased tumor-to-organ accumulation ratios due to the EPR effect, are obtained. At the target site, the linkers are cleaved, releasing the active agent and at the same time causing the degradation of the backbone into small blocks which are excreted by the kidney. Recently, several reports on linear polymers were published, in which the monomer units were linked by acid-labile linkers, such as ketal, acetal, and cis-aconitoyl bonds. By incorporating pH-sensitive bonds into the backbone of the polymeric carrier, degradation of the polymer under the acidic conditions in the intracellular environment is achieved. Jeffernan et al. synthesized a novel acid-labile poly-(1,4-phenyleneacetamide dimethylene ketal) (PPADK), through acetal exchange reaction. Those polyketaly nanoparticles bear ketal linkages in their backbone and degrade via acid-catalyzed hydrolysis into low Mw compounds that can be easily excreted [158]. This strategy still suffers from several disadvantages, such as low MW and absence of functional groups for attaching drugs, and thus requires further optimization [101].

Another example was developed by the Kopecek group, which converted the non-degradable HPMA copolymer to an enzymatically degradable one, which is still stable in circulation [159-161]. Pan et al. designed a new bifunctional RAFT chain transfer agent (CTA), which was added to two copies of lysosomally degradable Gly-Phe-Leu-Gly sequences, linked by Lys (i.e., peptide2CTA). Then, HPMA monomers were incorporated at both ends of the peptide2CTA with identical efficiency by RAFT polymerization, followed by thiol-ene chain extension. By doing so, they successfully linked 10–40 kDa linear polymer segments to enzymatically degradable oligopeptide sequences, which degradation products have MW distributions below the renal threshold. Both polyHPMA and HPMA-DOX were synthesized using this novel approach.

A novel type of partially degradable amphiphilic block copolymer of HPMA copolymer with poly(L-lactide) (PLLA) namely, (P(HPMA)-b-P(LLA), was recently synthesized and characterized by Zentel and co-workers [162]. Their aim was to convert a known non-degradable copolymer structure into a degradable one, which generates segments of size smaller than the renal excretion cut-off. They combined two different mechanisms of controlled polymerization; ring-opening polymerization (ROP) and subsequent RAFT polymerization. Till now, only fluorescent markers have been attached to this novel copolymer,

1.3. Metabolism and degradation

The polymer used for drug delivery should be eliminated from the body, either by excretion of non-degradable polymers, or by degradability of the biodegradable polymers.

1.3.1. Biodegradable polymers

Biodegradable polymers are polymers that can undergo cleavage of bonds in the polymeric backbone, either hydrolytically or enzymatically. Natural polymers such as collagen and hyaluronic acid undergo biodegradation with the degradation products, such as amino acids and saccharides, absorbed in the biochemical pathways of the body. Some synthetic polymers can undergo similar degradation. For example, Poly(L-glutamic acid) and poly(aspartic acid) are highly susceptible to degradation by lysosomal enzymes, producing monomeric amino acids as degradation products. The polysaccharide chitosan is mainly degraded by lysozyme through the hydrolysis of the acetylated residues [156]. Dextran is degraded by different dextranases, α-1-glucosidases, present in various organs, including liver, spleen, kidney, and the lower part of the GI tract [157].

1.3.2. Semi-degradable polymer backbones

A new emerging approach binds non-degradable polymer blocks with degradable linkers. Thus, high molecular weight copolymers, with prolonged circulation and increased tumor-to-organ accumulation ratios due to the EPR effect, are obtained. At the target site, the linkers are cleaved, releasing the active agent and at the same time causing the degradation of the backbone into small blocks which are excreted by the kidney. Recently, several reports on linear polymers were published, in which the monomer units were linked by acid-labile linkers, such as ketal, acetal, and cis-aconitoyl bonds. By incorporating pH-sensitive bonds into the backbone of the polymeric carrier, degradation of the polymer under the acidic conditions in the intracellular environment is achieved. Jeffernan et al. synthesized a novel acid-labile poly-(1,4-phenyleneacetamide dimethylene ketal) (PPADK), through acetal exchange reaction. Those polyketaly nanoparticles bear ketal linkages in their backbone and degrade via acid-catalyzed hydrolysis into low Mw compounds that can be easily excreted [158]. This strategy still suffers from several disadvantages, such as low MW and absence of functional groups for attaching drugs, and thus requires further optimization [101].

Another example was developed by the Kopecek group, which converted the non-degradable HPMA copolymer to an enzymatically degradable one, which is still stable in circulation [159-161]. Pan et al. designed a new bifunctional RAFT chain transfer agent (CTA), which was added to two copies of lysosomally degradable Gly-Phe-Leu-Gly sequences, linked by Lys (i.e., peptide2CTA). Then, HPMA monomers were incorporated at both ends of the peptide2CTA with identical efficiency by RAFT polymerization, followed by thiol-ene chain extension. By doing so, they successfully linked 10–40 kDa linear polymer segments to enzymatically degradable oligopeptide sequences, which degradation products have MW distributions below the renal threshold. Both polyHPMA and HPMA-DOX were synthesized using this novel approach.

A novel type of partially degradable amphiphilic block copolymer of HPMA copolymer with poly(L-lactide) (PLLA) namely, (P(HPMA)-b-P(LLA), was recently synthesized and characterized by Zentel and co-workers [162]. Their aim was to convert a known non-degradable copolymer structure into a degradable one, which generates segments of size smaller than the renal excretion cut-off. They combined two different mechanisms of controlled polymerization; ring-opening polymerization (ROP) and subsequent RAFT polymerization. Till now, only fluorescent markers have been attached to this novel copolymer,
but it represents a platform for the attachment of different drugs and/or targeting moieties.

1.4. Elimination of non-degradable polymers

Elimination of non-biodegradable polymers, such as PEG or HPMA copolymer, is hampered by their high molecular weight. Large molecules, such as the polymers discussed here, remain in the tissue after cellular death or undergo exocytosis. Then, they return to the bloodstream via the lymphatic circulation (which is usually impaired at the tumor site, making elimination slow [30]) and are eliminated by glomerular filtration in the kidney, provided they are below the glomerular threshold [163]. The molecular weight, the size and the shape of the polymer have major influence on its excretion and rate of glomerular filtration [164–166]. For example, it was demonstrated that star-shaped HPMA copolymer-bound doxorubicin conjugates were eliminated slower than classical hyperbranched conjugates [166]. In general, the rate of renal elimination is inversely correlated with the MW of the polymers [10,163,167]. The molecular weight thresholds for HPMA copolymer and for alginate were found to be about 45 kDa [163,168,169] and for PEG about 30 kDa [167] (however, the issue of PEG elimination is more complex, as discussed below).

Although many PEGylated compounds are currently marketed, concerns about the fate of PEG and potential toxic effects have been recently expressed [170]. The toxicity associated with PEGylated proteins is due to the pharmacology of the protein conjugated with PEG rather than due to PEG itself. However, this does not mean that PEG has no biological toxicity. Perhaps PEGylated biological products mask PEG’s toxicity in clinical setting on one hand, but on the other hand, marketed PEGylated compounds are administered at low clinical doses so that PEG toxicity is unlikely to occur.

The available data from animal studies show that PEG exhibits toxicities after systemic administration at high doses [171]. The usual target organ is the kidney, as renal excretion is the predominant route of clearance for PEG [171]. In some preclinical studies it has been reported on organ specific vacuolation occurring in animal models. The formation of these PEG-containing intracellular vesicles was linked to the clearance mechanism of PEGylated proteins. TNF binding protein PEGylated with 20 kDa PEG was shown to cause kidney lesions characterized by the presence of single or multiple cytoplasmic vacuoles in cortical tubular epithelial cells (i.e. vacuolation) at low-chronic-parenteral administration and after higher single dose in rats. Correlation has been seen between dose and dosing regimen of PEG–protein conjugates and the size of vacuoles formed, moreover, morphological alternation occurred in affected cells. Vacuolation may be a result of fluid distension of lysosomes due to the hypopermeability of the blood vessels can be exploited for extravasation of large conjugates to the tissue, while preventing its diffusion to other healthy organs. Addition of an active targeting moiety, such as a specific ligand or antibody, will help directing the conjugate to the relevant site and enhance its internalization into the target cells.

A well-designed linker between the drug and the polymer, will be cleaved selectively in the target site, and allow the release of the drug only within the target area. The linker can be designed to release the drug either near or inside the target cells and it can be cleaved by low pH, overexpressed enzymes or other conditions of the disease site microenvironment.

The metabolism of the polymer and its elimination from the body, are two very important features of a conjugate design, yet they are often overlooked. A successful conjugate will not only deliver the drug to its target and release it there, but it will also be eliminated from the body, preventing an iatrogenic illness, emerging from the accumulation of the polymer in the tissue or in the clearance organs of the body, the liver, kidneys or spleen. The use of a biodegradable polymer is preferable, but not always feasible, for it may not suit the other important factors of the conjugate, such as the required size or stability. A semi-degradable copolymer represents an excellent alternative, as it allows the use of a large polymer that can be degraded to smaller blocks that can be easily eliminated from the body.

Although the ADME concept is traditionally used to describe the route of a drug in the body, using this concept for rational design of a polymer therapeutic can offer many advantages. Following every step of the concept as early as in the design stage, allows monitoring of many of the biological factors and delivery system parameters that influence the successful creation of a new effective polymer therapeutic.

Acknowledgments

The Satchi-Fainaro laboratory is supported by Grant No. 5145-300000 from the Chief Scientist Office of the Ministry of Health, Israel, by the Israel Science Foundation (Grant No. 1309/10), a grant from...
the Alon Foundation, the Israel Cancer Association, Grant No. 2007347 given by the United States--Israel Binational Science Foundation (BSF), the German--Israel Foundation (GIF), the Israel Cancer Research Fund (ICRF), Association for International Cancer Research (AIACR), TAUR Center for Nanoscience and Nanotechnology and the Swiss Bridge.

References

147. R. Webster, E. Didier, P. Harris, N. Siegel, J. Stadler, L. Tilbury, D. Smith, PEGylated proteins: evaluation of their safety in the absence of definitive metabolism studies, Drug Metab. Dispos. 35 (2007) 9–16.

